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ON ROBUST BIVARIATE AND MULTIVARIATE CORRELATION 

COEFFICIENT 

 

 

Abstract. The main purpose of this paper is to formulate a robust 
correlation coefficient for high dimensional data in the presence of multivariate 

outliers. The proposed method is compared with the existing robust bivariate 

correlation based on Adjusted Winsorization data and the well-known Pearson’s 
correlation coefficient. The performance of our proposed method is investigated 

using artificial data and simulation study. An important implication of these 

findings is that the robust correlation based on RFCH estimator is more reliable 
and more efficient than the existing methods in all type of contamination scenarios.  

Keywords: Robust Correlation, RFCH, Winsorization, Outliers, MCD, 

MVE. 

 

1. Introduction 

Let  be the correlation coefficient between two random variables  and   let 

 be  observations from a bivariate normal distribution. The 

Pearson’s  product moment correlation coefficient which is widely used for 

estimating  is defined as,  

 

                                                    (1)  

where  and  are the sample mean.  

 

The density function of bivariate normal distribution where  is the maximum 

likelihood estimator of  can be written as follows, 

 
 

                                                     (2) 
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where  and  are the parameters of mean,  and  are standard deviations of 

the random variables  and  respectively (Shevlyakov and Smirnov,2011). t is 

well known that sample mean and sample standard deviation are easily affected by 

outliers or other contamination. In this situation   or   becomes nonrobust when 

outliers may occur in either   or  or in both .  As such, contamination 

model should be described using mixture normal densities, where outliers are 

distributed from another distribution. It is called normal mixture model ( Marrona 
et al. ,2006) where the distribution of outliers is normal but it differs from the 

normal distribution of the majority of data. Tukey’s gross error model 

(Tukey,1960) described such model based on sample correlation coefficient as 

follows,  

                   (3)  

 

where ,  and  is positive number such that  

. 

Since the sample correlation does not exactly comes from the bivariate normal 

distribution, but from a normal multivariate model,  the second part of Equation (3) 

would effect on the accuracy of the estimation of correlation coefficient. This is 
due to the fact that the mean and standard deviation estimation of good data in the 

first part of Equation (3) are combined with their counterparts in the second part. 

Thus, the sample correlation coefficient of model (3) is biased especially, when the 

 is significant and differ from their counterparts in the first part of Equation (3) 

(Shevlyakov and Smirnov,2011). Consequently, the presence of outliers in a data 

destroys the estimated value of  of good data and may change its sign 

(Gnanadesikan and Kettenring, 1972; Devlin, Gnanadesikan, and Kettenring, 

1981). On the solution considered to overcome this issue, the robustness literature 

shows a variety of approaches of robust correlations based on robust variance-
covariance matrix. The commonly used robust multivariate location and scatter 

matrices are the Minimum   Covariance Determinant (MCD) and Minimum 

Volume Ellipsoid (MVE) that were introduced  by  Rousseeuw (1984) and  
Rousseeuw (1985), respectively.  

Unfortunately, the MCD and the MVE are not feasible option for high dimensional 

data due to their time consuming procedures, even though the Fast-MCD is used 

(Rousseeuw and Van Driessen ,1999), see also Khan et al. (2007a) and  Khan et al. 
(2007b).  However, some publications addressed this issue and proposed using the 

approach of robust univariate correlation ( see, Alqallaf et al.,2002) or bivariate 

correlation that will be discussed later.  Khan et al. (2007b) proposed Adjusted 
Winsorization correlation which reduces the computation time as a robust bivariate 

correlation to overcome the problem of high dimensional data and bivariate outliers 

(outliers that are present in two predictors). Khan et al. (2007b) pointed out that the 
Adjusted Winsorization correlation yields very poor results in the presence of 

multivariate outliers. Olive and Hawkins (2010) proposed Reweighted Fast 
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Consistent and High breakdown (RFCH) estimator which is faster than the Fast 
MCD. To the best our knowledge, this estimator has not been used in the 

development of robust correlation coefficient in the presence of multivariate 

outliers (outliers that are present in more than two predictors). Therefore, the 
objective of this paper is to propose robust multivariate correlation matrix based on 

RFCH estimator which is more robust and less time consuming than the Adjusted 

Winsorized correlation. This paper is organized to present the bivariate correlation 

based on Adjusted Winsorization data in Section 2. The Section 3 describes the 
robust multivariate correlation matrix which relies on the RFCH estimator.  Section 

4 and Section 5 illustrate numerical example and simulation study to assess the 

performance of the RFCH correlation coefficient. 
    

2. Adjusted Winsorization Correlation  

Khan et al. (2007b) pointed out that the Pearson’s correlation coefficients can be 
calculated from Winsorized data based on the approach of univariateWinsorization 

of the data which was introduced by Huber (1981). Alqallaf et al. (2002) re-studied 

Huber (1981) approach to estimate the individual elements of high dimensional  

Figure 1: Winsorized univariate data with tuning constant ( ) to find the 

robust correlation estimates. 

Correlation matrix. This idea starts by standardizing the dependent variable  and 

independent variable   robustly as follows: 

  and    

where . 

They first determined tuning constant,  equals to 2.  Observations that having 

absolute value greater than , are transformed using Huber score function that are 

defined as follows,  

                                                      (4)  

and  
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                                                        (5)  

By using Figure 1, Khan et al. (2007b) illustrated that the univariateWinsorization 

approach brings the outlying observations to the boundary of a  square. The 

plot shows the effect of the correlation outliers at the bottom right corner which are 

shrunken to the corner , and thus are left almost unchanged. To remedy this 

problem, a robust correlation estimator derived from pairwise affine equivariant 

covariance estimator, such as bivariate M-estimator can be used (Maronna,1976), 

DGK  , OGK (Maronna and Zamar,2002).  Khan et al. (2007b) pointed out that this 

method is not fast enough with high dimensional data. Therefore, they suggested 
the approach of Adjusted Winsorization  as bivariate Winsorization  approach of 

the data which is based on an initial tolerance ellipse and corresponding to robust 

bivariate correlation matrix. The transformation shrinks the outliers to the border of 
this ellipse.  This approach can be summarized as follows,  

 

Step1. Determine different tuning constants  for different quadrants which is 

called the Adjusted Winsorization:   Let , then   is the 

subsample of where  and , and . The 

remaining  which is equivalent to (  is the second subsample, denoted as  

. If   the new tuning parameter   where  and 

then re-calculate the transformed variables using Equations (4) and (5), with new 

constant . Hence, the transformation includes only the outliers in . When 

  the new tuning parameter is  where .  The Huber 

univariateWinsorization correlation is given as follows,  

 

                                                        (6)  

Since  , the Equation (6) is then  written as follows,  

                                                (7)  

Figure 2: Adjusted Winsorization data with tuning constant ( ) and 

 for calculating the initial robust correlation estimate. 
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Figure 2 illustrates the limitations of the Adjusted Winsorization for finding the 
initial robust correlation estimate. It is obvious that the outlying points are 

illustrated to the corners of squares. 

Step 2 Outliers transformation:  

Suppose that  is a  matrix of  , such that,  

                                (8)  

and let , and the  is the Mahalanobis distance. 

The data points that has  are multiplied by , so that 

the  is the final transformed data which is used to find the correlation .  

 

Figure 3: Bivariate Winsorization tolerance ellipses for clean (smaller ellipse) 

and contaminated (larger ellipse) data. 

Figure 3 shows the tolerance ellipses used for bivariate Winsorization of both the  

full dataset of Figure 1 and the clean dataset after shrinkage of outliers. The 

bivariate Winsorization tolerance ellipse of clean data is slightly smaller than the 
tolerance ellipse of contaminated data and the outliers are shrunken toward the 

boundary of the larger ellipse. Note that the ellipses connect points of equal robust 

Mahalanobis distance which is based on the coordinatewise median and initial 

robust bivariate correlation matrix  The bivariate Winsorized correlation coefficient 

can be computed from the contaminated data, the points outside the largest ellipse 
are shrunken towards the boundary of that ellipse.Khan et al. (2007 a) concluded 

that in spite of the initial adjusted Winsorization and the resulting bivariate 

Winsorization are not affine equivariant, they are very fast to compute and 

appropriately handle correlation outliers The estimates of adjusted Winsorized 
correlation are consistent under certain regular conditions, provided that the 

location and scale estimates are consistent. Appendix A summarizes the algorithm 

of adjusted-Winsorization.  
3. The correlation based on Reweighted Fast Consistent and High breakdown 

estimator (RFCH). 

The concentrating algorithm assumes that the normality assumption for a linear 

regression is violated due to outliers or other contamination. The RFCH algorithm 
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is employed to clean the data. This procedure uses the DGK (Devlin et al., 1981) 
and  Median Ball (MB) (Olive and Hawkins, 2008),  These algorithms are 

summarized as follows.Suppose the matrix  is a combination of the response 

vector  and the covariates matrix .   

(i) The DGK Algorithm  

Step 1: Begin by computing the classical estimator  of the original dataset 

to give the initial or starting point and find the initial 

Mahalanobis distance.  

                             (9)  

Step 2: Arrange the initial Mahalanobis distances in increasing order to compute 

their median . Those observations in the original 

dataset whose Mahalanobis distances are less than the median of all the 

Mahalanobis distances will be in the remaining set (half dataset) and will be 

denoted by . 

Step 3: Let  be equal to  where  is the variance-covariance 

matrix of the original data. Calculate the average and the variance-covariance 

estimators of to get the first attractor . 

Step 4: If the diagonal elements of  are equal to  then stop the 

algorithm. Otherwise, repeat Steps 1-3 until convergence, to get the final 

attractor  and where  is the convergence step.  

(ii) The  Median Ball (MB) Algorithm   

Step 1: Suppose the initial variance-covariance matrix  of the 

identity matrix, and that Med is the median vector of the matrix  Then the 

Mahalanobis distance based on the median is defined as follows: 

                        (10)           

Step 2: The location criterion cut-off point is the median of , and is denoted 

by , 

(11) 

where . The cut-off point should be the quantile of  whose 

probability equals 0.5. For the concentration of  , find the half dataset with only 
non-outlying observations whose Mahalanobis distances are less than or equal to 

the median:  

           (12)  

Step 3: Compute the average and the variance-covariance matrix of .  

Step 4: For more concentrations, compute the Mahalanobis distances again, and 

repeat Steps (1-3) until convergence at the final attractor  and  

where  is the convergence step. 

(iii) The Reweighted Fast and Consistent High Breakdown (RFCH) Algorithm   
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Olive and Hawkins (2010) developed the MB estimator by adding the location 
criterion or cut-off point to select the attractor, and proposed the so-called Fast 

Consistent and High breakdown (FCH) estimator. Olive and Hawkins (2010) noted 

that the FCH estimator uses the attractors with the smallest determinant. 
 

Step 1: Following the same approach as Olive and Hawkins (2010), define the final 

attractors as follows: 

                                      (13)  

and  

14) 

 

where  is the 50th percentile of a chi-square distribution with  degrees of 

freedom. According to Theorem 1 (Olive and Hawkins, 2010) as long as the start 

 is a consistent estimator of either  or , 

the FCH attractor is a consistent estimator of , where 

 

 and ,  

 

and  or  based on the criterion cut-off point.  

Step 2: Obtain the Reweighted FCH attractors by isolating the observation with 

, and using the classical estimator to 

obtain  from: 

        (15) 

Compute the new cut-off point as . The new variance-

covariance matrix is:  

(16) 

Step 3:   Repeat steps (1-2) with the new cut-off point until convergence, to get the 

final attractors    and  .  

Upon convergence, the RFCH produced the final   estimators which 

is  consistent according to Olive and Hawkins (2010).  The RFCH correlation 

matrix is then formulated based on the  defined as follows:  



 
 
 
 
 
 
Hassan S. Uraibi, Habshah Midi 

___________________________________________________________________ 

228 

DOI: 10.24818/18423264/53.2.19.13 
 

 
 

 

(17) 

The computation of the RFCH is illustrated using the stack-loss data (available in 
R-software)  as follows: Firstly, the DGK algorithm is employed. The classical 

estimator  is used as an initial estimator to get the final 

attractor of DGK estimator .  The DGK is an iterative algorithm for 

location and dispersion estimator which  may converge in five steps. 

  

Consider, ,   

 
are the classical estimators  of robust standardize stack loss data ( available in R 

software), The values of MD of  the first trials (k=1) is presented in Table (1).   The 

second classical estimator   is computed based on half of the original 

data, check whether (1) is less than the median of (1). This procedure is 

repeated five times (k=1,2,3,4,5) to obtain the DGK estimators, 
  

,  

 

Table (1) shows that the MD of the five trials of DGK algorithm for stakloss data. 
It can be obtained from the results of the estimators which converged after four 

steps. 

Secondly, the Median Ball Algorithm is employed. 

The MB estimator  uses  as a start, where 

 is the coordinate-wise median and  is the identity matrix. 
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, ,  

It is obvious that the MB estimator converged after two steps which yields the 

consistent estimator ( ,  

,  

  

 .  

 

Table (2) shows that the MD of the five trials of MB algorithm for stakloss data. It 

can be obtained from the results of the estimators which converged after three 

steps.If the DGK location estimator  has a greater Euclidean distance than 

, FCH uses the MB attractor. The FCH uses the smallest determinant as 

the location criterion to choose the attractor if: 

                                  (18)  

where  is the square root of the mahalanobis distance. 

Hence,  which is less than  

, therefore the first  condition is satisfied and if the  

  the FCH attractor is  , otherwise  In 

our example of stackloss data,  which is less than , 

so that FCH attractor is .Finally in the third step, the Reweighted Fast 

and Consistent, High breakdown (RFCH) algorithm is employed.  

Let  be the attractor used, then the FCH estimator is  and 

weighted   as follows:  

 

19) 

where  is the 50th percentile of a chi-square distribution with p degrees of 

freedom. Refer to our example, the weighted  requires finding the constant c 

which is equals to   , where   and the 

 is already computed in Table (1) where k=5 in DGK algorithm. 

As a result of that c is (1.87), then 
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and 

 
Reweighted  estimator need to find  with cutoff 

point equivalent to . The classical estimator    is obtained 

from   cases  of original data which anolog . So 

that  

                                                (20) 

 

Numerically,  exhibited in Table (3) with cut-off point  

equals to 14.11.  The classical estimators of  cases with their  

14.11 is,  
 

 

 
 

The first reweighted of  is equivalent to multiplying by the constant 

   . 

 

 
 

Reweighted   through finding the classical estimator  of  

cases which  poses . Finally, the RFCH estimator 

equals to  

                                            (21)  

Table 1, Table 2 and Table 3 exhibit the DGK, MB and RFCH algorithms 

respectively. The values in parenthesis are the cutoff points and Re is the 

Reweighted RFCH.  
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Table 1. The DGK algorithm outputs of Mahalanobis distances at each 

iteration for stack loss data. 

 

The classical estimators of  cases with their  14.11 are presented 

in Table 3 as follows, 

  

 

 
 

The second reweighted of  is equivalent to multiplying  by the 

constant .  

 
The final estimate of location and variance covariance matrix for RFCH estimates 

are as follows: Location 

k=1 

(3.23) 

k=2 

(4.61) 

k=3 

(6.29) 

k=4 

(6.29) 

k=5 

(6.29) 

6.25 95.42 157.42 157.42 157.42 

5.82 45.82 50.50 50.50 50.50 

4.86 77.70 140.80 140.80 140.80 

5.25 69.28 175.37 175.37 175.37 

0.42 1.99 2.02 2.02 2.02 

1.61 3.01 3.13 3.13 3.13 

4.07 7.07 11.32 11.32 11.32 

3.65 9.04 19.06 19.06 19.06 

2.96 3.06 2.85 2.85 2.85 
3.22 3.90 6.29 6.29 6.29 

2.93 4.12 3.15 3.15 3.15 

4.55 4.38 2.71 2.71 2.71 
2.43 6.47 26.29 26.29 26.29 

3.16 4.61 4.40 4.40 4.40 

3.48 6.82 10.19 10.19 10.19 

1.76 3.43 3.29 3.29 3.29 

7.54 9.49 17.20 17.20 17.20 

2.28 2.75 3.60 3.60 3.60 

2.57 2.92 2.84 2.84 2.84 
0.87 3.72 5.69 5.69 5.69 

10.59 48.66 145.58 145.58 145.58 
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estimates,  and 

variance covariance matrix  

 

 
 

Hence, the RFCH correlation matrix is given by 
 

 
 
Table 2. The MB algorithm outputs of Mahalanobis distances at each iteration 

for stack loss data. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k=1 

(4.14) 

k=2 

(6.49) 

k=3 

(6.49) 

40.27 111.28 111.28 

33.15 53.46 53.46 

25.28 89.74 89.74 

7.08 68.40 68.40 

1.17 2.00 2.00 

1.73 2.82 2.82 

4.55 7.63 7.63 

4.81 9.70 9.70 

1.02 3.35 3.35 

2.96 3.61 3.61 
0.69 2.66 2.66 

1.19 2.84 2.84 

2.17 6.49 6.49 
2.19 4.13 4.13 

3.87 3.20 3.20 

4.14 3.94 3.94 

14.70 22.01 22.01 

6.56 9.27 9.27 

5.32 9.03 9.03 

1.38 4.26 4.26 

4.90 47.08 47.08 
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Table 3. The RFCH algorithm outputs of Mahalanobis distances at each 

iteration for stack loss data. 

 

Re(1) 

(11.14) 

Re(2) 

(11.14) 

Final 

MD  

84.02 83.78 105.21 

26.96 31.88 47.18 

75.14 70.21 84.65 

93.60 77.15 76.31 

1.08 1.33 1.70 
1.67 2.05 2.52 

6.04 2.21 6.67 

10.17 3.36 4.68 
1.52 1.72 2.48 

3.36 3.16 4.18 

1.68 1.97 3.02 

1.45 2.75 3.74 

14.03 9.64 6.67 

2.35 4.29 4.68 

5.44 3.65 5.01 
1.76 2.17 3.25 

9.18 4,23 5.66 

1.93 1.46 2.17 
1.52 1.87 2.75 

3.04 3.80 4.73 

77.70 76.44 62.84 

 
4. A Simulation Study  

To evaluate the performance of our proposed correlation coefficient based on 

RFCH, we extended the simulation study of Abdullah (1990) to be suitable for 

multivariate analysis. We generate 50 sample size of clean data according to the 
following linear regression model,  

 

                                            (22)  

where    , ,  , the standard deviation of 

errors  is selected to make signal to noise is .  

We use robust scale for all data as follows 

 

 
Then the Pearson’s correlation coefficients, ,  and  are 

computed. The  ,  and  are considered as the target regression 
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coefficients, since in the orthogonal design  ,   and 

 (see Appendix B) . Hence, we assume that  to simulate the 

normal density function .  

The contamination of the data is constructed to study the effect of univariate outlier 

(the outliers that are present only in one predictor), bivariate outliers (outliers that 
are present in two  predictors)  and multivariate outliers ( outliers that are present in 

more than two predictors) as follows,  

1- Delete the first five good observations of and replaced it with Vertical 

Outliers (VO’s) which are generated from another normal distribution with 

mean equals to 2.0 and standard deviation equals to 5.0.  

2-  Five Leverage Points (LP’s) are generated from uniform distribution on 

[5,10]  to replace the first five good observations in . 
3- Both VO’s and LP’s are present in the data.  The outliers are generated similar 

to 1 and 2 contaminations.  

4-  In addition to five leverage points generated as in 2, the first 10% good 

observations of   are replaced by LP’s which are generated from uniform 
distribution on [5, 10] to create bivariate LP’s.  

5- Multivariate outliers are created by generating the same process as in 1 and 4. 

 

The Pearson’s ,the Adjusted Winsorization and the RFCH correlations were then 

applied to the data. For each simulated data sets, there is 10000 replications. Over 
all 10000 replications, the average of Pearson’s, Adj.Winso.corandRFCH.cor 

correlation coefficients are computed for each dataset which is denoted as  

where . Then, we find the of absolute value of   which is 

denoted as Bias. The Root Mean Square Error (RMSE) of the  correlation 

coefficients replications is computed using the following formula,  

 

 
where  

 
and  is the number of replications. 

The Standard Error of   which is denoted as SE is the square root of 

.  Table 4 presents the bias, SE and RMSE of the  ,  and 

 for Pearson’s, Adj.Winso.corandRFCH.cor. The best method is the one that 

produces the lowest bias, SE and RMSE. We can see from Table 4 that the three 
methods are fairly close when there are no outliers in the data. We see that  the 

values of Bias1, Bias2 ,Bias3, SE1,SE2,SE3 and RMSE1, RMSE2, RMSE3  of 

Pearson’s are immediately affected by the presence of bivariate and multivariate 
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outliers (case 3,4,5). The Adj.Winso.cor  is better than the Pearson’s for all type of 
outliers, but cannot outperform the RFCH.cor. On the other  hand, the RFCH.cor is 

not much affected by outliers.  For all type of outliers, the values of Bias1, Bias2 

and Bias3, SE1,SE2,SE3 and RMSE2, RMSE3 of the RFCH.cor  remain almost the 
same as when there is no outlier in the data. It is evident from the results, that for 

bivariate outliers, the  Adj.Winso.cor  is  good only for the correlation of  and 

the response y (RMSE= 0.78) and  and the response variable  

However, for multivariate outliers (case 5) all RMSEs for Adj.Winso.cor . It 

is interesting to note that the RFCH.cor consistently has the smallest biases, SEs 

and RMSEs followed by Adj.Winso.cor   and Pearson. The results of simulation 

study are remarkably consistent in all outlier’s cases.  
The highest performance of  RFCH.cor is shown with Case3, Case4 and Case5 

where simulated data having vertical outliers jointed with univariate and bivariate 

outliers. Due to the fact that Adj.Winso.cor  is dealing with bivariate correlation, 

the presence of vertical outliers in Y- direction  and  univariate outliers in X-
direction is considered a bivariate outlier. This conception can be extended to 

consider the multivariate outliers when the X- direction having bivariate outliers.   

It is evident that the RFCH.cor estimates with all contamination cases are 
consistent and more stable than  Pearson’s and  Adj.Winso.cor  which failed to be 

resistance to the presence of outliers.  

 

5. Hawkins BraduKass (HBK) Data  
The performance of our proposed RFCH correlation estimator is further assess 

using Hawkins, Bradu and Kass (1984) data. This is an artificial three-predictors 

data set containing 75 observations with 10 outliers in both of the spaces (LP’s) 

[cases 1-10], 4 outliers in the -space [cases 11-14]  (see Hawkins et al., 1984; 

Habshah et al. , 2009; Rousseeuw and Leroy,1987).   Most of the single case 

deletion identification methods fail to identify the outliers in -space though some 

of them detected cases 11-14 as outliers in the -space. These data are considered 

in order to compare the performance of the Pearson’s and Adj.Winso.cor  with our 

proposed correlation.  All data are scaled and Pearson’s , Adj.Winso.cor and 

RFCH.cor  are  then computed. We assumed that the estimated correlation 

coefficient of the cases 15-75,  (when the first 14 high leverage points are 

removed from the data) is the target coefficient, for  . Hence, the 

correlation coefficient for the scaled data equivalents to the regression coefficients 
(see Appendix B). Therefore, the absolute value of the bias between sample 

correlation coefficient and the target correlation is considered as the criterion to 

evaluate the performance of all the three methods. The correlation method which 

shows the lowest bias is the best method.  In addition to this comparison criterion, 
the total amount of correlation coefficients (regression coefficients) that explain the 

variability in  is also considered as another comparison criterion. We assumed 

that the summation of target correlation is the threshold. For our data, the threshold 
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equals to (-0.080). The value of (-0.080) is obtained from the data when outliers are 
removed from the data. The summation of these coefficients represents the total 

contribution of all independent variables in . The absolute value of the difference 

between the estimated correlations (coefficients) and the target correlation and the 

summation of the target correlation are used as the criterion to determine the best 

correlation method. Another criterion to choose the best method of correlation is 

the one in which the summation of coefficients is close to the threshold.  
Table 5 exhibits the sample correlation, the absolute value of the 

differences; ,  and  and 

the summation of the target correlations. The results show that the Pearson’s and 
Adj.Winso.cor  coefficients  are  much affected by outliers.  The  RFCH.cor 

coefficients are more accurate than the Pearson’s and Adj.Winso.cor  coefficients 

because it has the lowest values of  ,  and 

 and yields perfect total amount of  RFCH.cor coefficients 

which is (-0.080) which is exactly equals to the sum of the target correlations.  

 

6. Conclusion 
     The main focus of this study was to formulate a fast and more efficient 

alternative correlation coefficients between variables for high dimensional data in 

the presence of multivariate outliers. We have compared its performance with 

several correlations coefficients. The widely used  Pearson’s correlation is not 
robust in the presence of outliers. The adjusted Winsorization correlations is put 

forward to remedy this problem.  Nonetheless, the adjusted Winsorization 

correlation is only robust to bivariate and not robust to multivariate outliers. We 
propose RFCH correlations in this regard.  The numerical example and simulation 

study revealed that our proposed robust correlation based on RFCH is more 

resistant to univariate, bivariate and multivariate outliers, irrespective of the 
outliers scenarios and  percentage of outliers in the dataset. It is more consistent 

and more robust than the adjusted Winsorization correlation. 
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Table 4.  The bias, standard error and root mean square errors of Pearson’s, Adj.Winso and RFCH.cor 

Case Method Bias1 Bias2 Bias3 SE1 SE2 SE3 RMSE1 RMSE2 RMSE3 

 
Without outliers 

Pearson’s 0.72 0.71 0.71 0.11 0.16 0.16 0.73 0.73 0.73 

Adj.Winso.cor 0.71 0.72 0.71 0.13 0.11 0.13 0.73 0.73 0.72 

RFCH.cor 0.73 0.73 0.73 0.11 0.16 0.16 0.75 0.75 0.75 

 

Case1  

( 5 VO’s)   

Pearson’s 0.85 0.86 0.86 0.17 0.10 0.10 0.87 0.87 0.87 

Adj.Winso 0.67 0.77 0.93 0.20 0.16 0.21 0.70 0.78 0.95 

RFCH.cor 0.73 0.73 0.74 0.19 0.19 0.15 0.75 0.75 0.76 

 
Case2 

( 5 LP’s in X1)   

Pearson’s 0.91 0.71 0.72 0.15 0.16 0.11 0.92 0.73 0.73 

Adj.Winso.cor 0.91 0.72 0.71 0.04 0.11 0.08 0.91 0.73 0.72 

RFCH.cor 0.73 0.73 0.73 0.16 0.16 0.13 0.75 0.74 0.75 

 

Case 3 

( 5 VO’s and   5 LP’s in X1 )   

Pearson’s 0.81 0.85 0.85 0.32 0.17 0.17 0.87 0.86 0.87 

Adj.Winso.cor 0.77 0.77 0.93 0.22 0.13 0.21 0.80 0.78 0.95 

RFCH.cor 0.73 0.73 0.73 0.16 0.16 0.16 0.75 0.75 0.75 
 

Case 4 

( 5 LP’s in X1 and   5 LP’s in 

X2 ) 

Pearson’s 0.91 0.90 0.71 0.15 0.14 0.16 0.92 0.91 0.72 

Adj.Winso.cor 0.90 0.89 0.71 0.14 0.09 0.13    0.91    0.90 0.72 

RFCH.cor 0.73 0.73 0.73 0.16 0.16 0.13 0.75 0.75 0.75 

 

Case 5 

( 5 VO’s,  5 LP’s in X1 and   5 
LP’s in X2 ) 

Pearson’s 0.80 0.94 0.85 0.35 0.33 0.17 0.87 0.99 0.87 

Adj.Winso.cor 0.77 0.86 0.93 0.22 0.20 0.19 0.80 0.88 0.95 

RFCH.cor 0.73 0.72 0.72 0.13 0.18 0.18 0.74 0.74 0.74 
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Table 5. Sample correlation coefficient, bias and summation of Sample correlation 

coefficient of Pearson’s, Adj.Winso.cor and RFCH.cor for HBK (1984) artificial data.  

 

 Pearson’s Adj.Winso.cor RFCH.cor 

 0.743 0.883 0.098 

 0.708 0.92 0.003 

 0.757 0.938 -0.181 

 
0.823 0.963 0.178 

 
0.789 1.001 0.083 

 
0.937 1.018 0.101 

 

2.208 2.742 -0.080 

 2.288 2.822 6.96E-05 

 


